If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+80X-225=0
a = 1; b = 80; c = -225;
Δ = b2-4ac
Δ = 802-4·1·(-225)
Δ = 7300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7300}=\sqrt{100*73}=\sqrt{100}*\sqrt{73}=10\sqrt{73}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-10\sqrt{73}}{2*1}=\frac{-80-10\sqrt{73}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+10\sqrt{73}}{2*1}=\frac{-80+10\sqrt{73}}{2} $
| 3(4c-2)=5(2c-6) | | X-218=10x+97 | | 3^2x+4=243 | | X=8+3(180-x) | | 5-7k=-k(k+1)-3 | | (x+12)+(x+12)+x=180 | | 7y+5y=50 | | 2y+50=5y+5 | | 2(x-3)-4=-3x-10 | | 1/4x1/2x=18 | | (3x^2-4x+1)/x^2+3x+2=0 | | -38+7x=46+4x | | 6/11=y3 | | r/15+1=106 | | -8m-21=-6m+5 | | -3/5x=45 | | 11x-35=25+15x | | 12-5x=18-2x | | 3(y-4)+15=5(y-7)-10 | | s=1.25 | | X-12=-4x+23 | | X/5=15/1+x/3 | | q/9-11=88 | | 0.3+5.24=3/2x+2.24x | | 11x-4=238 | | p/4+6=90 | | (3z+4)=6z-3(3z+2) | | 3/5x^2+x=0 | | 48+(n×91)=1.29n | | -30=-2(-a+3) | | 4y-12=20y= | | 3x+2(-4x-4)=2 |